Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 MatterSim: DL-модель для предсказания свойств материалов от Microsoft.

MatterSim - усовершенствованная модель глубокого обучения в области материаловедения, предназначенная для моделирования свойств материалов в широком диапазоне элементов, температур и давлений. Она способна точно предсказывать свойства материалов по всей периодической таблице в диапазоне температур от 0 до 5000K и давления до 1000GPa.

MatterSim использует архитектуру M3GNet, которая включает в себя двух- и трехчастичные взаимодействия. Модель обучается с использованием функции потерь, учитывающей энергию на атом, вектор силы на каждом атоме и напряжение.

Особенность MatterSim - способность к активному и непрерывному обучению. Модель способна оценивать неопределенность своих прогнозов и выбирать структуры для активного обучения, что полезно для повышения точности моделирования сложных систем. MatterSim может быть настроена для моделирования на произвольном уровне теории.

Модель демонстрирует высокую точность в предсказании свободной энергии Гиббса и 10-кратное улучшение точности по сравнению с универсальными силовыми полями, обученными на траекториях релаксации на наборах данных MPF-TP и Random-TP.

Модель может быть точно настроена для атомистических симуляций на желаемом уровне теории или для прямых предсказаний "структура-свойство"с сокращением требований к данным до 97%.

▶️В релизе представлены 2 версии модели:

🟢MatterSim-v1.0.0-1M - мини-версия модели, которая работает быстрее;
🟢MatterSim-v1.0.0-5M - увеличенная версия, которая является более точной.

⚠️ Рекомендуется устанавливать MatterSim с помощью mamba или micromamba, поскольку conda может работать значительно медленнее при разрешении зависимостей в environment.yaml.

▶️ Установка и использование на примере ASE калькулятора:

# Install package with the latest version
pip install git+https://github.com/microsoft/mattersim.git

# Create env via mamba
mamba env create -f environment.yaml
mamba activate mattersim
uv pip install -e .
python setup.py build_ext --inplace

# Minimal example using ASE calculator
import torch
from ase.build import bulk
from ase.units import GPa
from mattersim.forcefield import MatterSimCalculator

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Running MatterSim on {device}")

si = bulk("Si", "diamond", a=5.43)
si.calc = MatterSimCalculator(device=device)
print(f"Energy (eV) = {si.get_potential_energy()}")
print(f"Energy per atom (eV/atom) = {si.get_potential_energy()/len(si)}")
print(f"Forces of first atom (eV/A) = {si.get_forces()[0]}")
print(f"Stress[0][0] (eV/A^3) = {si.get_stress(voigt=False)[0][0]}")
print(f"Stress[0][0] (GPa) = {si.get_stress(voigt=False)[0][0] / GPa}")


📌Лицензирование: MIT License.


🟡Модель
🟡Документация
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #DL #Mattersim #Microsoft
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/pro_python_code/1631
Create:
Last Update:

🌟 MatterSim: DL-модель для предсказания свойств материалов от Microsoft.

MatterSim - усовершенствованная модель глубокого обучения в области материаловедения, предназначенная для моделирования свойств материалов в широком диапазоне элементов, температур и давлений. Она способна точно предсказывать свойства материалов по всей периодической таблице в диапазоне температур от 0 до 5000K и давления до 1000GPa.

MatterSim использует архитектуру M3GNet, которая включает в себя двух- и трехчастичные взаимодействия. Модель обучается с использованием функции потерь, учитывающей энергию на атом, вектор силы на каждом атоме и напряжение.

Особенность MatterSim - способность к активному и непрерывному обучению. Модель способна оценивать неопределенность своих прогнозов и выбирать структуры для активного обучения, что полезно для повышения точности моделирования сложных систем. MatterSim может быть настроена для моделирования на произвольном уровне теории.

Модель демонстрирует высокую точность в предсказании свободной энергии Гиббса и 10-кратное улучшение точности по сравнению с универсальными силовыми полями, обученными на траекториях релаксации на наборах данных MPF-TP и Random-TP.

Модель может быть точно настроена для атомистических симуляций на желаемом уровне теории или для прямых предсказаний "структура-свойство"с сокращением требований к данным до 97%.

▶️В релизе представлены 2 версии модели:

🟢MatterSim-v1.0.0-1M - мини-версия модели, которая работает быстрее;
🟢MatterSim-v1.0.0-5M - увеличенная версия, которая является более точной.

⚠️ Рекомендуется устанавливать MatterSim с помощью mamba или micromamba, поскольку conda может работать значительно медленнее при разрешении зависимостей в environment.yaml.

▶️ Установка и использование на примере ASE калькулятора:

# Install package with the latest version
pip install git+https://github.com/microsoft/mattersim.git

# Create env via mamba
mamba env create -f environment.yaml
mamba activate mattersim
uv pip install -e .
python setup.py build_ext --inplace

# Minimal example using ASE calculator
import torch
from ase.build import bulk
from ase.units import GPa
from mattersim.forcefield import MatterSimCalculator

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Running MatterSim on {device}")

si = bulk("Si", "diamond", a=5.43)
si.calc = MatterSimCalculator(device=device)
print(f"Energy (eV) = {si.get_potential_energy()}")
print(f"Energy per atom (eV/atom) = {si.get_potential_energy()/len(si)}")
print(f"Forces of first atom (eV/A) = {si.get_forces()[0]}")
print(f"Stress[0][0] (eV/A^3) = {si.get_stress(voigt=False)[0][0]}")
print(f"Stress[0][0] (GPa) = {si.get_stress(voigt=False)[0][0] / GPa}")


📌Лицензирование: MIT License.


🟡Модель
🟡Документация
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #DL #Mattersim #Microsoft

BY Python RU







Share with your friend now:
tg-me.com/pro_python_code/1631

View MORE
Open in Telegram


Python RU Telegram | DID YOU KNOW?

Date: |

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

Python RU from kr


Telegram Python RU
FROM USA